Stride interval dynamics are altered when two individuals walk side by side.
نویسندگان
چکیده
The purpose of this study was to examine the effects of interpersonal synchronization of stepping on stride interval dynamics during over-ground walking. Twenty-seven footswitch instrumented subjects walked under three conditions: independent (SOLO), alongside a partner (PAIRED), and side by side with intentional synchronization (FORCED). A subset of subjects also synchronized stepping to a metronome (MET). Stride time power spectral density and detrended fluctuation analysis revealed that the rate of autocorrelation decay in stride time was similar for both the SOLO and PAIRED conditions, but was significantly reduced during the FORCED and MET conditions (p=0.03 & 0.002). Stride time variability was also significantly increased for the FORCED and MET conditions (p<0.001). These data suggest that forced synchronization of stepping results in altered stride interval dynamics, likely through increased active control by the CNS. Passive side by side stepping, where synchronization is subconscious, does not appreciably alter stepping in this manner.
منابع مشابه
Veering in hemi-Parkinson’s disease: Primacy of visual over motor contributions
Veering while walking is often reported in individuals with Parkinson's disease (PD), with potential mechanisms being vision-based (asymmetrical perception of the visual environment) or motoric (asymmetry in stride length between relatively affected and non-affected body side). We examined these competing hypotheses by assessing veering in 13 normal control participants (NC) and 20 non-demented...
متن کاملVarying treadmill speed and inclination affects spontaneous synchronization when two individuals walk side by side.
Studying spontaneous synchronization of stepping as two individuals walk on side-by-side treadmills may be useful for understanding the control of bipedal locomotion and may have implications for gait rehabilitation. Existing data suggest that this behavior is related to differences in leg length, walkway slope, and overground speed between partners, and might be promoted by altering these vari...
متن کاملEffect of Interpersonal Interaction on Festinating Gait Rehabilitation in Patients with Parkinson’s Disease
UNLABELLED Although human walking gait rhythms are generated by native individual gait dynamics, these gait dynamics change during interactions between humans. A typical phenomenon is synchronization of gait rhythms during cooperative walking. Our previous research revealed that fluctuation characteristics in stride interval of subjects with Parkinson's disease changed from random to 1/f fluctu...
متن کاملAltered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington's disease.
Fluctuations in the duration of the gait cycle (the stride interval) display fractal dynamics and long-range correlations in healthy young adults. We hypothesized that these stride-interval correlations would be altered by changes in neurological function associated with aging and certain disease states. To test this hypothesis, we compared the stride-interval time series of 1) healthy elderly ...
متن کاملWalking on a Vertically Oscillating Treadmill: Phase Synchronization and Gait Kinematics
Sensory motor synchronization can be used to alter gait behavior. This type of therapy may be useful in a rehabilitative setting, though several questions remain regarding the most effective way to promote and sustain synchronization. The purpose of this study was to describe a new technique for using synchronization to influence a person's gait and to compare walking behavior under this paradi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Motor control
دوره 15 3 شماره
صفحات -
تاریخ انتشار 2011